

Different study designs for signal detection and evaluation in pregnancy

ENCePP Plenary Meeting 11 October 2012

Lolkje T.W. de Jong - van den Berg

Drug use in pregnancy......Concerns?

Outcomes of interest

- Conception (infertility) and contraception (OC failure).
- Pregnancy loss (15% spontaneous abortions).
- Health of the mother (preeclampsia).
- <u>Health of the offspring (preterm, congenital malformations</u>).
 - Preterm Delivery, 6-10%
 - Major Congenital Malformations, 3-4%
- Long-term effects (neurodevelopment, late-diagnosis).

What do we know before a drug is marketed?

Animal studies

- rarely predict human teratogenicity

Premarket human trials

- usually exclude pregnant women
- too small to detect teratogenesis

Pharmacology

- teratogenic mechanisms largely unknown
- teratogenicity often unrelated to a drug's therapeutic action or clinical toxicity

Congenital Anomalies

 Teratogenic effects are often specific, i.e., a drug does not increase the risk of ALL malformations.

> Valproic acid & NTD Paroxetine & heart defects Lithium & Ebstein anomaly

- Need to consider specific congenital anomalies.
 - Major Malformations, 3-4 per 100
 - Specific Major Malformations, 1 per 1,000 or lower

Prevalence of congenital anomalies

Any malformation

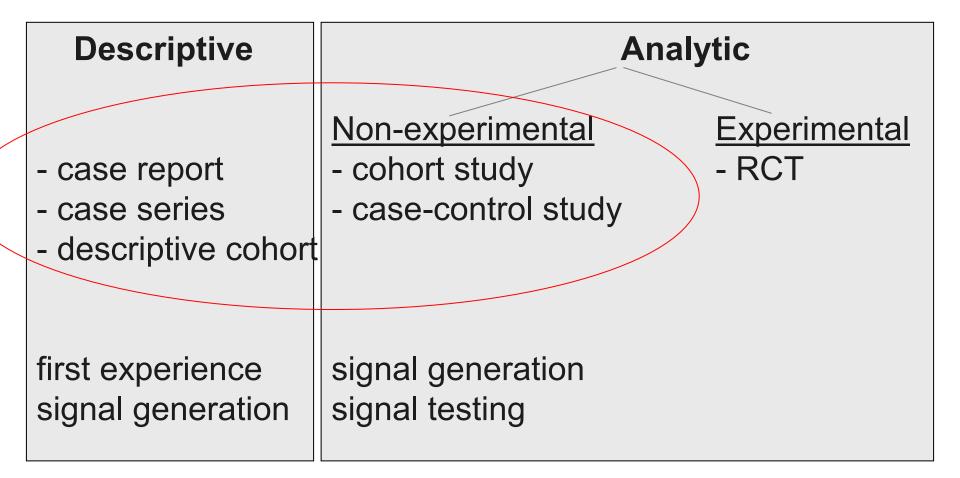
3-4%

Spina bifida	0.1-0.05%
Congenital heart disease	0.7%
– VSD	0.2%
Orofacial clefts	0.1-0.2%
Musculo-skeletal	0.08%
 Craniosynostosis 	0.014%

Lumping or splitting

Birth defects

- Taking all MCM together can dilute the effect
- Lumping is sometimes justified in case BDs originate from the same teratogenic mechanism (vit A derivates and cranial neural crest cells disruption)

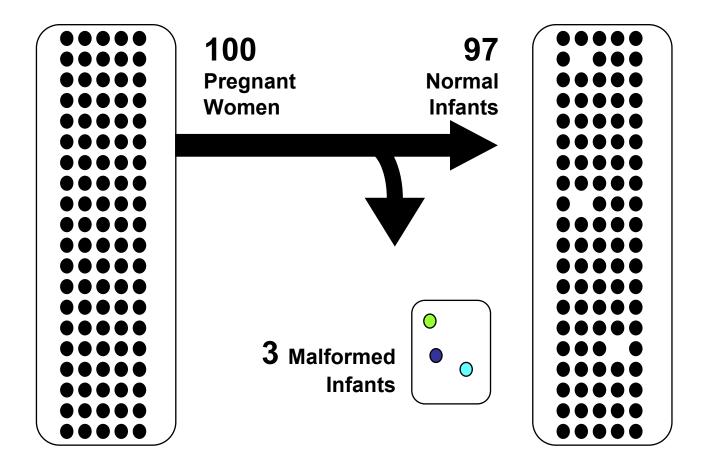

Drugs

- Taking all SSRIs will result in no effect while specific drugs can have an effect.
- Lumping is sometimes possible example: all folic-acid antagonists together is justified and therefore will give more power.

Teratogenic mechanisms associated with medical drug use

- Folate antagonism
- Neural crest cell disruption
- Endocrine disruption
- Oxidative stress
- Vascular disruption
- Receptor- or enzyme-mediated teratogenesis

Observational study designs



Observational epidemiologic studies

Cohorts

- Identify persons exposed to selected drugs and then identify outcomes.
 Prospective or retrospective
- Case-control study:
 - Identify adverse event and then identify specific exposure of interest.
- Case-control surveillance:
 - Multiple case-control studies in one infrastructure for birth defects (as ICBDSR, EUROCAT, Slone, CDC,.....)

Cohort Design

Pregnancy registries of drug companies 1:1000

acyclovir ('84-'98) (n=581) 15x

lamotrigine ('92-04) (n=831) 10x

sumatriptan ('96-'98) (n=183) 20x

to put this in a context:

- phenytoine may cause a 2-3 fold increase in BDs
- valproic acid increases the prevalence of spina bifida by about 10-fold.

Cohort studies are important to detects high and moderate teratogens

Cohort: Isotretinoin Prospectively Enrolled Pregnancies (n=36)

Specific malformations:

face / skull defects

145 x increased

Cohort Studies

For a relatively common defect such as oral cleft (baseline 1 per 1,000 births):

To identify a risk		Need to follow:	
of at least	Exposed	Not exposed	Total
20-fold	150	300	450
12-fold	300	600	900
5-fold	2,000	4,000	6,000

alpha = 0.05, beta = 0.20.

Cohort Studies

For a rare defect, affecting 1 per 10,000 births:

To identify a risk		Need to follow:	
of at least	Exposed	Not exposed	Total
20-fold	1,500	3,000	4,500
12-fold	3,000	6,000	9,000
5-fold	20,000	40,000	60,000
alpha = 0.05, beta = 0.20			

aipna = 0.05, peta = 0.20.

Detection of teratogens after being on the market

	on market	detected as teratogen
thalidomide isotretinoin	1958 1980s	1961 within 1 year
phenytoine valproic acid carbamazepin	1938 1960s 1960 (trig neur) 1970 (epilepsia)	1968, confirmed 1973 1982 1991
DES	1950	1971

Small cohort (2 examples)

1. Leflunomide:

an immuno-modulator to treat Multiple Sclerosis (MS) A prospective small cohort study (Chambers 2010)

2 Mycophenolate:

An immuno-suppressant drug used to prevent organ rejection after transplantation

A descriptive prospective small cohort (Hoeltzenbein 2012)

Leflunomide

- Teratogenic and embryotoxic effects in animal studies
- Post-approval prospective cohort study conducted by the Teratology Counseling Services (US, Canada) OTIS (2000-2008)
- 64 pregnant women with RA treated with leflunomide and two comparative groups:
 - 108 pregnant women with RA **not** treated with leflunomide and
 - 78 healthy pregnant women.
- Information collected via interviews with mothers, review medical record and specialized physical examination of children

	Leflunomide 64	RA comp. 108	Healthy comp. 78	
Live births	56 (88%)	95 (88%)	72 (92%)	ns
Spontaneous abortion	5 (8%)	8 (7%)	3 (4%)	ns
Stillbirth	0	1	0	
Elective termination	1	0	0	
Lost to follow-up	1	2	3	
Major Cong. Anom.	3/63 (5%) *	7/93 (7%)	3/75 (4%)	ns

* Occult spinal dysraphism, utero-pelvic dysjunction, microcephaly

Conclusion of this study

Although the sample size is small, these data do **not support** the notion that there is a substantial increased risk of adverse pregnancy outcomes due to leflunomide exposure among women who undergo cholestyramine elimination procedure early in pregnancy.

These findings can provide some reassurance to women who inadvertently became pregnant while taking leflunomide and undergo wash-out procedure

Chambers C Arthritis Rheum. 2010;62:1494-1503

Mycophenolate

- An immunosuppressant drug used to prevent organ rejection after transplantation and prescribed for systemic lupus erythematosus (SLE) and other auto-immune diseases
- Teratogenic effect shown in rats and rabbits at doses comparable with those in humans
- Post-marketing from pharmaceutical company and transplantation registries have suggested a high risk for adverse pregnancy outcomes
 At least 19 cases with congenital anomalies are documented. The pattern of anomalies consist of microtia, atresia of external auditory canal, orofacial clefts, heart defects, eye anomalies.
- Some cases have been published repeatedly and most were retrospective reports

Prospective descriptive cohort identified by ENTIS

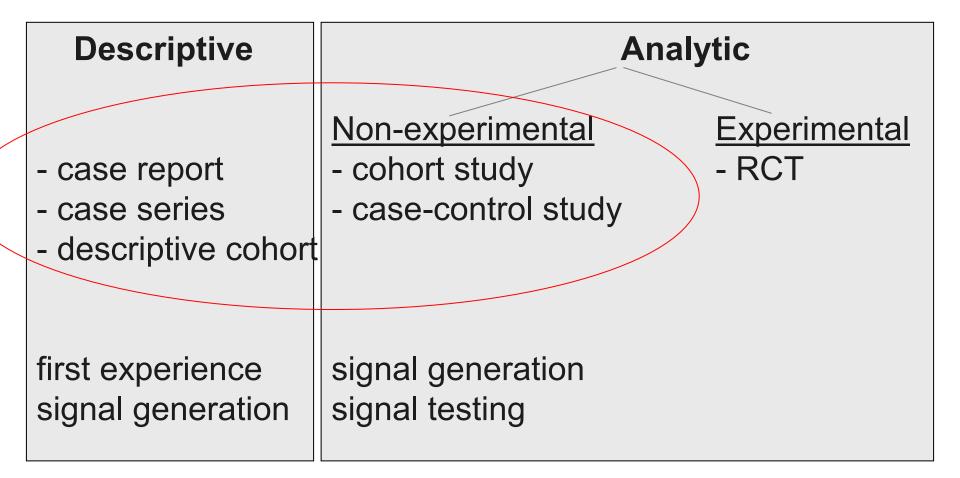
- Objective: to estimate the prevalence of major congenital anomalies and to further confirm its teratogenicity
- From 1998-2011, 72 pregnancies with mycophenolate exposure were identified by members of ENTIS
 - 14 were reported retrospectively (not included)
 - 58 were prospectively of whom 1 ongoing
 - 57 pregnancies included in the study
- Treatment indications were organ transplantation (22 women) SLE (23) and other auto-immune diseases (12).
- All exposed during the first trimester, median dose approx 1g/day. 75% stopped therapy before week 8 of pregnancy. 43 women had additional immunosuppressive therapy.

Outcome of these 57 pregnancies

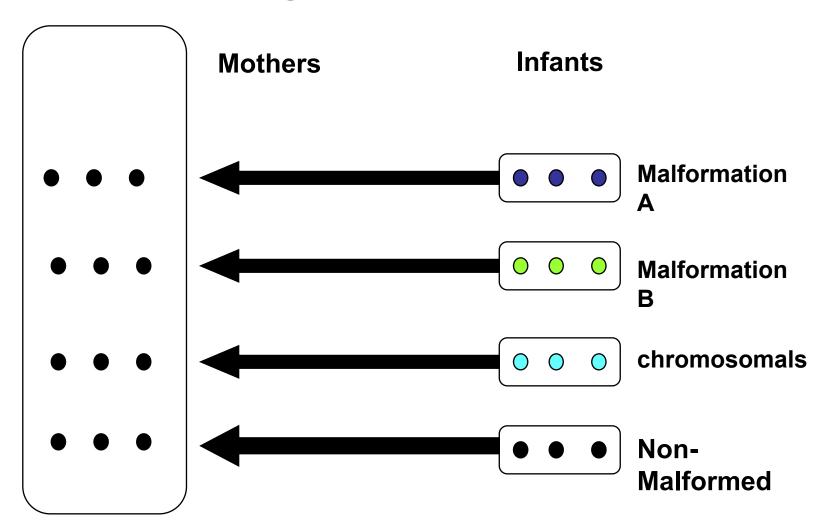
- 16 spontaneous abortion (16/57= 28%)
- 12 elective terminations (8 personal reasons, 2 because of the disease and 2 late due to multiple anomalies)
- 29 liveborn of whom 6 with major congenital anomalies

Of the 31 informative pregnancies (29 + 2 ETOP) 8 fetuses/infants with a major congenital anomaly (26%)

The pregnancy outcome of women who discontinued treatment before week 6 of pregnancy:


- 17 livebirths (1 meningocele)
- 9 spontaneous abortions
- 5 terminations

Conclusions of this cohort


- The authors confirm the high risk for congenital anomalies not yet reported for other immunosuppressive drugs
- Specific features of mycophenolate embryology
- Increased risk especially when exposure last longer that 7 wk of pregnancy

Hoeltzenbein M et al Am J of Med Genet Part A 2012; 158A:588-596 :

Observational study designs

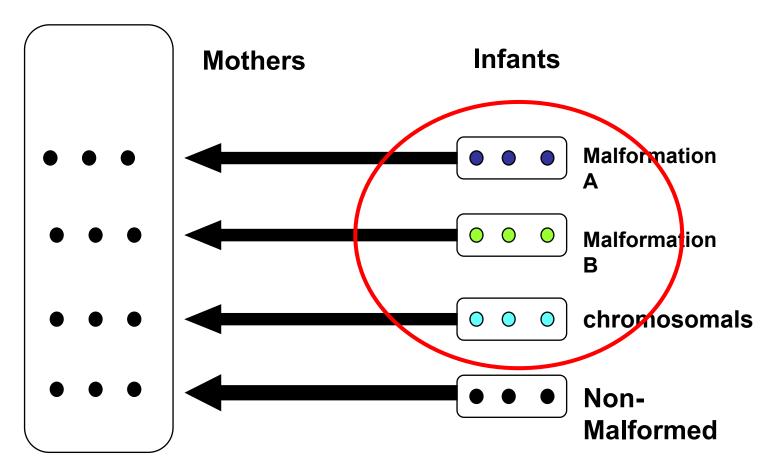
Case-Control Design

Historical case-control study DES and 'clear cell' cancer

clear cell cancer

yes no yes 7 2 Exposed to DES during pregnancy no 1 30

Odds ratio : 7/1 : 2/30 = 210/2 = 105


SSRIs and pulmonary hypertension in the newborn

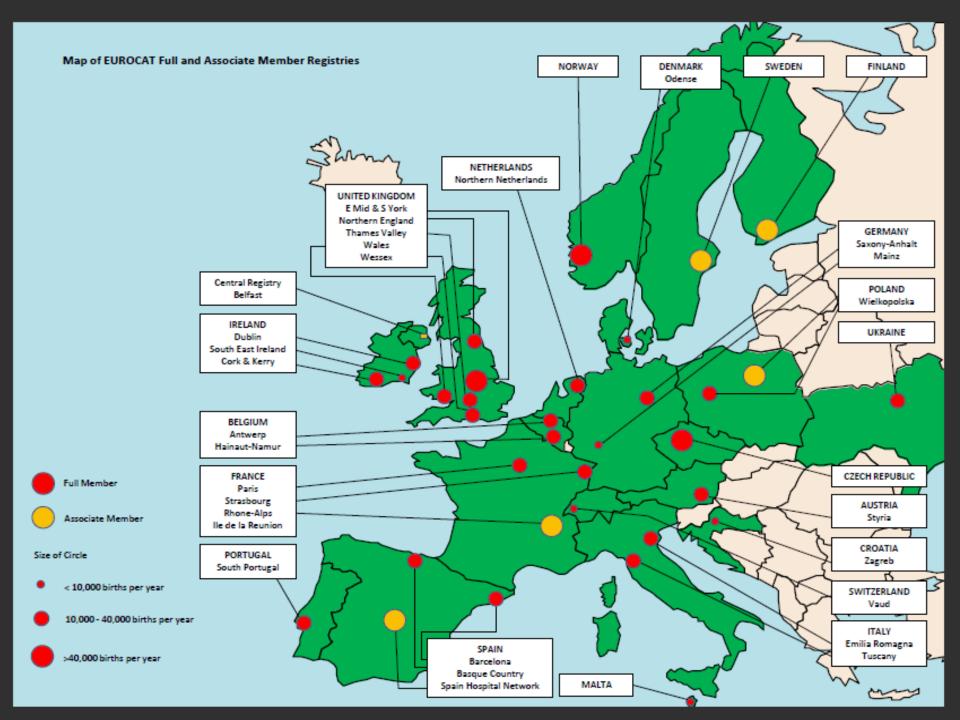
pulmonary hypertension

		yes	no
Exposed to	yes	14	6
SSRIs after 20 weeks	no	361	812

Odds ratio = 14/361 : 6/812 = 6.1 (2.2-15.5)

Case-Control monitoring system

EUROCAT: network of population-based birth-defect registries and can be used to test signals of specific BDs related to specific drugs.


EUROmediCAT is the dataset with detailed information of drug exposure

EUROCAT

- European network of population-based congenital anomaly registries across Europe.
 - Live births, still births, fetal deaths and termination after prenatal diagnoses
 - Standardised classification system for malformations (ICD-9/10) and drugs (ATC-codes) (EUROCAT Guide 1.3)
 - Minor anomalies are excluded
- Established in 1979 for surveillance of congenital birth defects.
 - To provide essential epidemiologic information on congenital birth defects (prevalence, trends by region, over time).
 - To serve as early warning system for new teratogenic effects
 - To assess impact of new prevention/screening programs

- Consists of 43 member registries across 20 countries
- Coverage of registries varies e.g. at regional/country level
- EUROCAT network covers 1.5 million births each year
 1/3 of all births in Europe

http://www.eurocatnetwork.eu/content/EUROCAT-Guide-1.3.pdf

EUROCAT, limitations

- Data on exposure to drugs in the first trimester collected through maternal interviews or linkage to pharmacy registries
 - Captures up to five drug exposures
 - ATC codes
- Data on drug exposure in pregnancy are not available in all registries, Chronic drugs use is well documented (antiepileptics, insuline, ...)
- Additional covariates of interest available include maternal age, gestational age, maternal illness before and during pregnancy No info about smoking and alcohol use!!

EUROCAT AED-study Database

- FDA alert based on Holmes findings of a 17-fold increased risk of orofacial clefts after lamotrigine exposure (2007)
- EUROCAT created a EUROCAT Antiepileptic Study Database including data from 19 registries, 1995-2005.
 - Inclusion of registries only where AED exposure recorded for at least 3 per 1000 malformed infants
 - Inclusion of registries only with complete drug name or 7-digit ATC code for at least 80% AED exposed infants
- This dataset was used to conduct a population-based case-control study with malformed controls evaluating the risk of orofacial clefts related to lamotrigine exposure (**hypothesis driven study**).

Risk of orofacial clefts related to lamotrigine exposure

Final dataset

85,563 registrations:

- 5,511 non-syndromic orofacial clefts (isolated and multiple) of whom 1969 cleft palate
- 4571 isolated non-syndromic orofacial clefts of whom 1532 isolated cleft palate
- 80,052 controls (malformed controls)
- 495 AED exposed registrations
 - Over 80% monotherapy
 - AED exposure 5.8/1000 registrations

Lamotrigin & orofacial clefts: power calculation

Power calculation

- 4571 isolated orofacial clefts
- Exposure rate of lamotrigine monotherapy 0.44 per 1000
- We will include at least 10 controls per case
- Power of 80%, alpha 0.05

We can detect an odds ratio of 3.3

For isolated cleft palate we can detect an odds ratio of 6.6

Results .. no increased risk

We evaluated the signal: lamotrigine and orofacial clefts in a population-based case-control study with malformed controls Lamotrigine monotherapy compared with no AED-use

	LTG m OR _{adj}	nonotherapy vs no AED 95%Cl
orofacial cleft (I)	0.80	[0.11-2.85]
orofacial cleft (I+M)	0.67	[0.10-2.34]
cleft palate (I)	1.01	[0.03-5.57]
cleft palate (I+M)	0.79	[0.03-4.35]

No confirmation of the increased risk noted in the alert.

Discussion

- Study demonstrates the issue of studying a rare outcome and a rare exposure.
- Among 3.9 million births, we only captured ~70 LTG exposures among case and control groups.
- Numbers were still adequate to rule out threefold increase in risk.
- We continued to use this data also for evaluating :
 - The risk of valproic acid and various specific birth defects related to the use of other antiepileptic drugs
 - And carbamazepin and various birth defects

Valproic acid and specific birth defects

- Study population 19 EUROCAT registries: 3.8 million births covered including 98,075 malformed
- Study design:
 - Literature review to find signals
 - Test these signals in case-control study
 - Control groups: -non-chromosomal
 -chromosomal
 - Exposure: -VPA mono vs. no AED-VPA mono vs. other AED mono

- All these 8 studies presented a case-list of specific birth defects

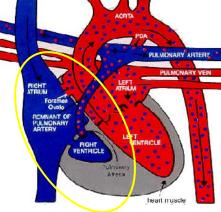
- In 3 cases we contacted the first author of the study for more detailed info about the specific birth defect

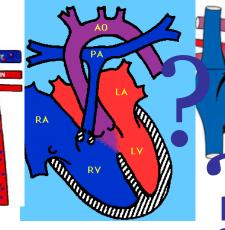
- Based on this information we calculated the prevalence of specific birth defects among the 1565 valproic acid exposed pregnancies

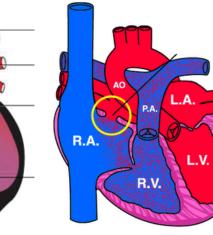
- We compared that with the prevalence of these specific birth defects in the general EUROCAT population

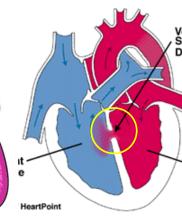
- When the prevalence of a specific birth defect among valproic acid exposed pregnancies was sign. higher than in the general population it was regarded as a signal.

These signals were tested in a case- malformed control design.

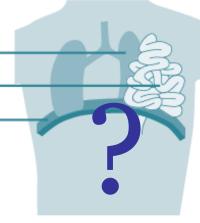

Included studies, literature review

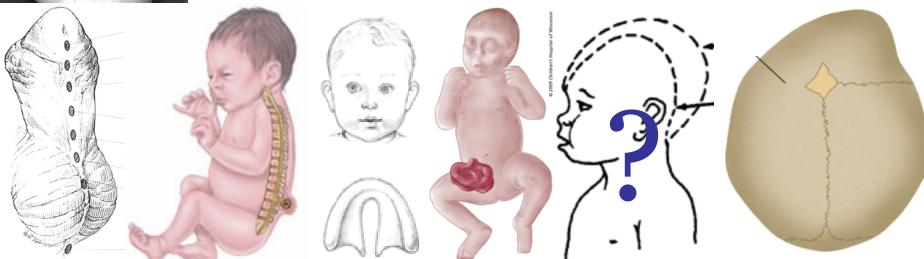

	Valproic acid monotherapy exposed				
Study	number	Malformed	Rate (95%CI)		
Samrén 1997	184	16	8.7% [5.4-13.7]		
Kaaja 2003	61	4	6.6% [2.6-15.7]		
Sabers 2004	30	2	6.7% [1.9-21.3]		
Vajda 2004	89	15	16.9% [10.5-26.0]		
Wide 2004	268	26	9.7% [6.7-13.8]		
Wyszinsky 2005	149	16	10.7% [6.3-16.8]		
Meador 2006	69	12	17.4% [10.2-28.0]		
Morrow 2006	715	44	6.2% [4.6-8.2]		
Total	1565	135	8.6% [7.3-10.1]		
Total MCM*	1565	188	7.5% [6.3-9.0]		


* According to the EUROCAT classification (based on ICD-10) 17 were only minor and therefore excluded


14 signals of specific BDs identified

	Literature		EUROCAT		
	number	prev./1000	number	prev./1000	P-value
Spina bifida	22	14.1	1933	0.5	P<0.0000
microcephaly	2	1.3	745	0.2	P=0.0296
VSD	12	7.7	1189	3.1	P<0.0000
ASD	11	7.0	8428	2.2	P=0.0001
Tetralogy of Fallot	3	1.9	991	0.3	P=0.0010
Pulmonary valve atresia	3	1.9	339	0.1	P<0.0000
Hypoplastic right heart	1	0.6	99	0.03	P=0.0225
Cleft palate	13	8.3	2338	0.6	P<0.0000
Diaphragmatic hernia	4	2.6	766	0.2	P<0.0000
gastroschisis	2	1.3	807	0.2	P=0.0407
hypospadias	22	14.1	541	1.4	P<0.0000
Club foot	8	5.1	3847	1.0	P<0.0000
polydactyly	8	5.1	3594	0.9	P<0.0000
Craniosynostosis	5	3.2	551	0.1	P<0.0000





Does 1st trimester VPA exposure increase the risk for all these defects??

Results summarised

- 14 signals identified in literature
- 6 confirmed: comp. with no AED-exp
 - spina bifida: OR=12.7 (7.7-20.7)
 - ASD: OR=2.5 (1.4-4.4)
 - cleft palate: OR= 5.2 (2.8-9.9)
 - hypospadias: OR=4.8 (2.9-8.1)
 - polydactyly: OR= 2.2 (1.0-4.5)
 - craniosynostosis: OR= 6.8 (1.8-8.8)
- 4 non-significantly increased (OR 2-4):
 - microcephaly
 OR=2.5 (0.3-9.7)
 - tetralogy of Fallot
 OR=2.8 (0.6-8.6)
 - pulmonary valve atresia
 OR=2.8 (0.1-16.7)
 - diaphragmatic hernia
- OR=2.3 (0.3-9.0)

Results summarised

- 14 signals identified in literature
- 6 confirmed: comp. with no AED-exp
 - spina bifida: OR=12.7 (7.7-20.7)
 - ASD: OR=2.5 (1.4-4.4)
 - cleft palate: OR= 5.2 (2.8-9.9)
 - hypospadias: OR=4.8 (2.9-8.1)
 - Polydactyly: OR= 2.2 (1.0-4.5)
 - Craniosynostosis: OR= 6.8 (1.8-8.8)

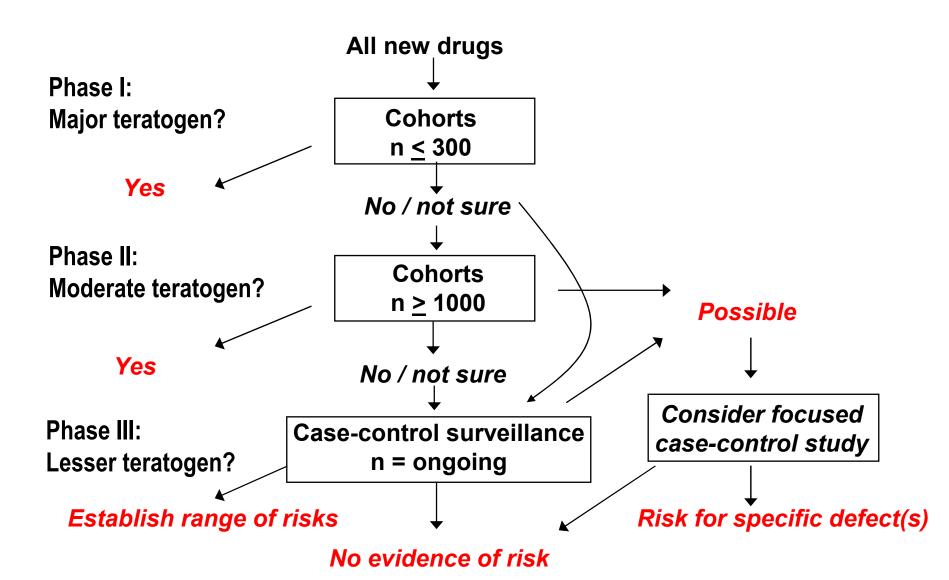
comp with other AED monoth. 5.7 (2.6-12.3) 3.2 (1.5-7.0) 3.0 (1.2-7.4) 6.7 (2.9-15.2) 7.1 (1.8-28.4) 4.9 (0.7-55.2)

- 4 non-significantly increased (OR 2-4):
 - Microcephaly
 - tetralogy of Fallot
 - pulmonary valve atresia
 - diaphragmatic hernia

OR=2.5 (0.3-9.7) OR=2.8 (0.6-8.6) OR=2.8 (0.1-16.7)

OR=2.3 (0.3-9.0)

Jentink J et al Valproic acid monotherapy in pregnancy and major congenital malformations N EnglJ Med 2010;362:2185-2193


To remind

- **General birth defects** is not a single outcome, so ideally you have to look at specific birth defects
- **Teratogenicity** should be studied in each individually drug
- **Small cohorts** are sufficient to identify high-risk teratogens, which affect a large proportion of exposed pregnancies......
- Case-Control Studies / Surveillance facilitates to study all individual major birth defects in relation to all drug exposures and are efficient to identify moderate-risk teratogens

- Potential for recall bias

- Moderate risks of uncommonly used drugs may take a long time to identify and small risks of such drugs may escape detection.

A Possible Approach (Dr. A. Mitchell)

Case-Control Studies

For a drug used by 5% of controls:

To identify a risk	N	leed to identify	/:
of at least	Cases	Controls	Total
20-fold	10	20	30
5-fold	50	100	150

alpha = 0.05, beta = 0.20.

Case-Control Studies

For a drug used by 0.1% of controls:

To identify a risk of at least	Cases	Need to identify Controls	: Total
10-fold	700	1,400	2,100
5-fold	2,000	4,000	6,000

alpha = 0.05, beta = 0.20.